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An examination is made of turbulent flow in the main section in an
infinite system of plane nonisothermal jets, The results of calculation
are compared with experimental data,

We shall examine the flow formed in the basic sec-
tion of the mixing zone of an infinite system of plane
nonisothermal jets, discharging from nozzles of width
A/2 each. The jet exits we shall assume to be such
(Fig. 1) that periodic flow occurs with period A. In
this case the streamlines passing through the middle
of the nozzles will be straight lines parallel to the axis
ox, and therefore it will be sufficient to examine the
flow between any two streamlines separated by a dis-
tance A, for example between lines ac and bd.

The analogous problem for the isothermal case was
examined in [1].

We shall assume that ¢, T > /2, Prp =1 and ¢p =
= const, and then the basic equations describing tur-
bulent motion in the mixing zone will take the form
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We shall write the boundary conditions in the form

o T 0 fory=0, +2; (9
dy oy 2’
u=u(y), T=TQ), p=p; forx=x;. (29

Transforming the first and third equations of sys-
tem (1) with the help of the continuity equation, and
integrating them with respect to y in the range [~A /2,
A2], subject to conditions (2), we obtain the following
integral conditions for conservation of momentum and
heat: '
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f {(p + pu?)dy = I = const, (3)

~k/2
ouTdy = H, = const. (4)

. Integrating the continuity equation over the same limits,
we find an integral condition for conservation of mass:

A/2
S' pudy =

X

M, = const. (5)

At infinity (for x — =), because the mixing is com~
plete, the stream will be uniform, i. e., it will move
with constant velocity u. , temperature To, pressure
Pw, and density pwo -

For the turbulent viscosity ¢ we shall make use of
the Prandtl hypothesis, according to which

&= K & (Umax — Umin) = K A [1 (0) — u (1/2)]. (6)

Following substitution of (6) into (1), and going over to
dimensionless variables according to the formulas x =
= X'\, y =y'A U= UWlegs VEVUgps T=T'Tw, p=

=p' pgouoo, and p = p'Pw, system (1) may rewritten in
the form (for convenience the primes in the dimension-
less variables are omitted)
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where
quRTw/ui.

The dimensionless boundary conditions coincide in form
with (2) and (2.

We shall seek expressions for u, T, and p in the
form of the expansions
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Eliminating v by means of the continuity equation,
transformed to the form

y
v=~i5i(pu)dy, (9
) ; ox

and the density p by means of the equation of state,
from the first and third equations of systems (7), sub-
stituting the expansion (8) into these equations and
equating coefficients of the same powers of x on the
left and right sides, we obtain the following system of
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equations to determine the coelfficients @; and cj of the
expansion

all’ + a,/K 61 = bl/K 617
ay + 20,/K 8, = a; c; —a; ¢; — [by/by + 8,/8,1 &} — 2a,¢,/K 8; —

¥
— Ay ayKby 8+ a; S‘Al dy/Kby 8, — (216, + 2b,)/K 8y,
8

a; 4 3ay/K 8, =c| ay + a;c; + [by/by + 85/8] al‘c" —
— @ € — @y €, — [by/by - 8:/8,] [a] ¢, + af) —

[ & L b & b_2] Z 4ayey + 2046, + 0463
"

%, e s T b K&

y
— (1120, -+ 20,61 — Ay &y — 207 | Ay dy /Kby 8, +-
0
4
+ 12,6, + ay) S A, dy/Kby 8, —
0

— (3D, -+ 4byc; + 2bic, + byc])/ K 8

...........

(10)
C’{+CI/K61=O,
&+ 2/K 8y = ¢ —r¢f — b + EL] ¢ —
bl) 61
Y
— (2()0 G+ah—c (A dy)/Kbo 8
i
€5+ 3cy/K 8 = 2¢) ¢, + [by/by + 8,/8,] c'lz-clc;——czc;-—
by S, _ [ 8 b 8 b, ] ”
—_ e Gl — |t —— g —
e R et sl
N (T S 1263 + 2c,) + €1 Ap)/K by 3y +
¥ y
F (16 + 2667] § Axdy + 26§ Ay dy KD 85
0 0
P ,(11)

where we have introduced the notation
8 =a0)—a;(1/2) (=1, 2 3),
A, = by — by, + b;
Ay = by — by, — 1by 4 byc? + ayby — byay6y + byay;
Ay == by — by — by + 2byei6, — 1by + 2 by — bycd
+ ayb, — aibyC, — 0,6y by 4 4,byc? - ayby — agbocy A ashy.
The boundary conditions for the system obtained are

gﬂ._—_:a_‘:‘_ZO for y:O’ t 1. (12)

oy dy )
Substitution of the expansion (9) into the integral
conditions (3)—(5), written for dimensionless variables,

and equating the coefficients for the same powers of x
on the left and right sides leads to the relations
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Then system (10) and (11) together with conditions
(13) represents a closed system of ordinary linear
differential equations, which may be integrated suc-
cessively.

The general solution of the first equation of system
(10) has the form

a; = A; cos V1I/K 6, y+ B,siny/ 1/K 6, y — b;. (16)
Because of conditions (12), we must put B, = 0,
V1UK$, = 2n. (17)
The solution of (16) may be rewritten in the form

a = A; cos (2xy) — by, (18)

The solution of the first equation of system (11),
satisfying condition (12), is

¢, = Aj cos (2n y) = ¢, (0) cos (2m y). (19)

Satisfying the second condition of system (13), we ob-
tain by = 0. From equality (18), using (17), we find

A=q0)=—a,(1/2) = 1/8x2 K. (20)

The constant of integration c¢,(0) is as yet undefined.

In a similar way we may integrate the remaining
equations and find that

cos (2m 1)
X

u =1+ L {

Py + [0’5 b + C cos 2ny) +

by—1

+ 0.5¢,(0) cos (4n y)]/x2 +
o+ [Tt

—|—c‘€¥-+— ¢y cos (2ny)]/x3 + [6,(0) C cos (4m y) +

+0.25 ¢, (0 cos (67 )|/ + . . } (21)
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Fig. 1. Flow model.
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Fig. 2. The distribution of velocity {points 1—experi-
ment, solid line is calculation) and of temperature
(points 2—experiment, dashed line is calculation) in
the cross sections [—x/A = 6,55, 1I—9,62, II—12,7,
IV—15.76 for u, = 54.6 m/sec, uy = 49.4 m/sec, T, =
= 400° K, T, = 304° K (@), and in the cross sections
I—x/A =6,075, 11—8.93, 1II—11.78 for u, = 60.8 m/sec,
u, = 46.2 m/sec, T{= 396" K, T, = 310° K (b}.
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Fig. 3. Distribution of velocity in the cross sections
I-x /A = 3.46, [I—6.55, I11—9.62, IV—15.76 for u; =
= 29.2 m/sec, u, = 48.75 m/sec; 1) experiment;
2) theory.
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Here [; = a,(0) — c,(0) = 1/87*K — ¢{(0)}; c4(0) and C are
constants of integration which are determined by con-
ditions (2.

It may be seen from formulas (21)—(23) that the
profiles of velocity and of temperature, as well as the
variation of pressure along the axis ox, depend on the
initial distributions of velocity and temperature, and
on the initial value of pressure.

The values of the stream parameters at infinity are
determined by simultaneous solution of the equations

Iy = poti?, A (by + 1),

Ho= 0o ttes T o &,
M; = 0o Ue Ay
by = RT /U2, (24)

where Uy, Tows P and by are unknowns.

In order to check the solution obtained we performed
calculations of the profiles of velocity and temperature
in the main part of a system of plane isothermal and
nonisothermal jets. The values of profiles of velocity,
temperature, and pressure in the initial section, and
also the abscissa of the initial section were taken from
experiments conducted in an experimental installation
in the hydrodynamics laboratory of the LPI. The con-
stants ¢,(0) and C were determined from the condition
of best agreement between the analytical and the ex-
perimental profiles of velocity and temperature at the
initial section of the main part, having substituted into
(21) and (22) values of abscissa x equal to the values
at the initial section xj.

We note that the calculations were performed with
the first three terms of the expansion of u and T in
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negative powers of x taken into account, while the num-
ber of constants in (21), (22), subject to determination,
depends on the number of terms of the series in (8)
taken into account.

In the case shown in Fig. 2, a, the dimensionless
abscissa of the initial section is equal to xj/A = 6.55.
The conditions at the entrance were: u,uy = 0.9; T, =
=400° K, Ty = 304° K, ue = 40.8 m/sec, Tw = 350° K.
For ¢4(0) and C the following values were found:

¢ (0y=04; C=—38.

The results of calculation for other initial data
(xi/A = 6.075, u, = 41.4 m/sec, Tw = 356° K; uyu; =
=0.76, T, = 396" K, T, = 310° K) are shown in Fig. 2,
b. In this case it turned out that

¢1(0) =0217; C=—0.359.

Figure 3 shows the development of the velocity pro-
file in isothermal conditions with initial data xj/A =
= 3.46, U« = 30.5 m/sec. The constant of integration
C turned out to be 0.585.

A value K = 0.016 for the empirical turbulence con-
stant was assumed in all cases.

In the cases examined the variation in pressure,
both in experiment and in the calculations, proved to
be negligibly small.

The results of comparison of the calculated curves
with experiment permit us to conclude that there is
satisfactory agreement between the calculated and the
experimental data.

NOTATION

%, and y are the coordinate axes; u and v are the
velocity components along the x and y axes, respectively;
p is density; cp is specific heat at constant pressure; T
is absolute temperature; pispressure; Prr and € are,
respectively, the turbulent analogs of Prandtl number
and kinematic viscosity; R is the gas constant; xj is
the abscissa of the initial cross section of the main
section; K is the empirical turbulence constant, deter-—
mined from experiment.
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